Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Aerobiologia (Bologna) ; 38(3): 391-412, 2022.
Article in English | MEDLINE | ID: covidwho-2007173

ABSTRACT

The SARS-CoV-2 presence and the bacterial community profile in air samples collected at the Intensive Care Unit (ICU) of the Operational Unit of Infectious Diseases of Santa Caterina Novella Hospital in Galatina (Lecce, Italy) have been evaluated in this study. Air samplings were performed in different rooms of the ICU ward with and without COVID-19 patients. No sample was found positive to SARS-CoV-2, according to Allplex 2019-nCoV Assay. The airborne bacterial community profiles determined by the 16S rRNA gene metabarcoding approach up to the species level were characterized by richness and biodiversity indices, Spearman correlation coefficients, and Principal Coordinate Analysis. Pathogenic and non-pathogenic bacterial species, also detected in outdoor air samples, were found in all collected indoor samples. Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and others coagulase-negative staphylococci, detected at high relative abundances in all the patients' rooms, were the most abundant pathogenic species. The highest mean relative abundance of S. pettenkoferi and C. tuberculostearicum suggested that they were likely the main pathogens of COVID-19 patients at the ICU ward of this study. The identification of nosocomial pathogens representing potential patients' risks in ICU COVID-19 rooms and the still controversial airborne transmission of the SARS-CoV-2 are the main contributions of this study. Supplementary Information: The online version contains supplementary material available at 10.1007/s10453-022-09754-7.

2.
Int J Environ Res Public Health ; 19(16)2022 08 16.
Article in English | MEDLINE | ID: covidwho-1987799

ABSTRACT

The compositional analysis of 16S rRNA gene sequencing datasets is applied to characterize the bacterial structure of airborne samples collected in different locations of a hospital infection disease department hosting COVID-19 patients, as well as to investigate the relationships among bacterial taxa at the genus and species level. The exploration of the centered log-ratio transformed data by the principal component analysis via the singular value decomposition has shown that the collected samples segregated with an observable separation depending on the monitoring location. More specifically, two main sample clusters were identified with regards to bacterial genera (species), consisting of samples mostly collected in rooms with and without COVID-19 patients, respectively. Human pathogenic genera (species) associated with nosocomial infections were mostly found in samples from areas hosting patients, while non-pathogenic genera (species) mainly isolated from soil were detected in the other samples. Propionibacterium acnes, Staphylococcus pettenkoferi, Corynebacterium tuberculostearicum, and jeikeium were the main pathogenic species detected in COVID-19 patients' rooms. Samples from these locations were on average characterized by smaller richness/evenness and diversity than the other ones, both at the genus and species level. Finally, the ρ metrics revealed that pairwise positive associations occurred either between pathogenic or non-pathogenic taxa.


Subject(s)
COVID-19 , Microbiota , Bacteria , COVID-19/epidemiology , Data Analysis , Genes, rRNA , Hospitals , Humans , Microbiota/genetics , RNA, Ribosomal, 16S/genetics
3.
Int J Environ Res Public Health ; 19(12)2022 06 16.
Article in English | MEDLINE | ID: covidwho-1896867

ABSTRACT

In the last two years, the world has been overwhelmed by SARS-CoV-2. One of the most important ways to prevent the spread of the virus is the control of indoor conditions: from surface hygiene to ventilation. Regarding the indoor environments, monitoring the presence of the virus in the indoor air seems to be promising, since there is strong evidence that airborne transmission through infected droplets and aerosols is its dominant transmission route. So far, few studies report the successful detection of SARS-CoV-2 in the air; moreover, the lack of a standard guideline for air monitoring reduces the uniformity of the results and their usefulness in the management of the risk of virus transmission. In this work, starting from a critical analysis of the existing standards and guidelines for indoor air quality, we define a strategy to set-up indoor air sampling plans for the detection of SARS-CoV-2. The strategy is then tested through a case study conducted in two kindergartens in the metropolitan city of Milan, in Italy, involving a total of 290 children and 47 teachers from 19 classrooms. The results proved its completeness, effectiveness, and suitability as a key tool in the airborne SARS-CoV-2 infection risk management process. Future research directions are then identified and discussed.


Subject(s)
Air Pollution, Indoor , COVID-19 , Aerosols , Air Pollution, Indoor/prevention & control , COVID-19/diagnosis , Child , Humans , SARS-CoV-2 , Ventilation
4.
Clin Transplant ; 36(1): e14495, 2022 01.
Article in English | MEDLINE | ID: covidwho-1437995

ABSTRACT

Solid organ transplant patients are at a higher risk for poor CoronaVirus Disease-2019 (COVID-19)-related outcomes and have been included as a priority group in the vaccination strategy worldwide. We assessed the safety and efficacy of a two-dose vaccination cycle with mRNA-based COVID-19 vaccine (BNT162b2) among 82 kidney transplant outpatients followed in our center in Rome, Italy. After a median of 43 post-vaccine days, a SARS-CoV-2 anti-Spike seroprevalence of 52.4% (n = 43/82) was observed. No impact of the vaccination on antibody-mediated rejection or graft function was observed, and no significant safety concerns were reported. Moreover, no de novo HLA-donor-specific antibodies (DSA) were detected during the follow-up period. Only one patient with pre-vaccination HLA-DSA did not experience an increased intensity of the existing HLA-DSA. During the follow-up, only one infection (mild COVID-19) was observed in a patient after receiving the first vaccine dose. According to the multivariable logistic regression analysis, lack of seroconversion after two-dose vaccination independently associated with patient age ≥60 years (OR = 4.50; P = .02) and use of anti-metabolite as an immunosuppressant drug (OR = 5.26; P = .004). Among younger patients not taking anti-metabolites, the seroconversion rate was high (92.9%). Further larger studies are needed to assess the best COVID-19 vaccination strategy in transplanted patients.


Subject(s)
COVID-19 , Kidney Transplantation , Antibodies, Viral , BNT162 Vaccine , COVID-19 Vaccines , Humans , Middle Aged , Risk Factors , SARS-CoV-2 , Seroepidemiologic Studies , Vaccination
5.
Toxins (Basel) ; 13(8)2021 07 24.
Article in English | MEDLINE | ID: covidwho-1376976

ABSTRACT

The atmosphere represents an underexplored temporary habitat for airborne microbial communities such as eukaryotes, whose taxonomic structure changes across different locations and/or regions as a function of both survival conditions and sources. A preliminary dataset on the seasonal dependence of the airborne eukaryotic community biodiversity, detected in PM10 samples collected from July 2018 to June 2019 at a coastal site representative of the Central Mediterranean, is provided in this study. Viridiplantae and Fungi were the most abundant eukaryotic kingdoms. Streptophyta was the prevailing Viridiplantae phylum, whilst Ascomycota and Basidiomycota were the prevailing Fungi phyla. Brassica and Panicum were the most abundant Streptophyta genera in winter and summer, respectively, whereas Olea was the most abundant genus in spring and autumn. With regards to Fungi, Botrytis and Colletotrichum were the most abundant Ascomycota genera, reaching the highest abundance in spring and summer, respectively, while Cryptococcus and Ustilago were the most abundant Basidiomycota genera, and reached the highest abundance in winter and spring, respectively. The genus community structure in the PM10 samples varied day-by-day, and mainly along with the seasons. The impact of long-range transported air masses on the same structure was also proven. Nevertheless, rather few genera were significantly correlated with meteorological parameters and PM10 mass concentrations. The PCoA plots and non-parametric Spearman's rank-order correlation coefficients showed that the strongest correlations generally occurred between parameters reaching high abundances/values in the same season or PM10 sample. Moreover, the screening of potential pathogenic fungi allowed us to detect seven potential pathogenic genera in our PM10 samples. We also found that, with the exception of Panicum and Physcomitrella, all of the most abundant and pervasive identified Streptophyta genera could serve as potential sources of aeroallergens in the studied area.


Subject(s)
Air Microbiology , Eukaryota/isolation & purification , Particulate Matter/analysis , Biodiversity , Environmental Monitoring , Eukaryota/genetics , Mediterranean Region , RNA, Ribosomal, 18S , Seasons
6.
Cancers (Basel) ; 12(10)2020 Oct 18.
Article in English | MEDLINE | ID: covidwho-905363

ABSTRACT

While the emotional response of healthcare providers during the COVID-19 pandemic has been extensively investigated in countries in the Far-East, little is known about the psychological impact and the associated emotional distress of healthcare providers in Italy, especially with regard to different regions. The aim of the "VIRARE" survey, which was addressed to all the healthcare providers in the Lazio region (central Italy) and, in particular, to those working in the oncology field, is to analyze their opinion on the impact and management of the pandemic, to better understand the level of their psychological distress. A global good psychological response of healthcare providers to the pandemic has emerged, independently from their different occupations in the oncology field. Healthcare providers show a high degree of resilience, identifying the major causes of distress the difficulty of the management of this situation, the obstacles in their working activity and expressing a high degree of dissatisfaction with how Italian institutions handled this situation. This survey also provides a direct comparison between COVID-19-infected (or directly in contact with COVID-19-infected patients) and uninfected healthcare providers, identifying the sub-category of infected professionals that reported signs of depression as particularly vulnerable.

7.
ACS Med Chem Lett ; 11(10): 2048-2050, 2020 Oct 08.
Article in English | MEDLINE | ID: covidwho-867361

ABSTRACT

PB28, a cyclohexylpiperazine derivative, could be a potential strategy for Covid 19 because in a recent study it has been found more active than hydroxychloroquine without interaction with cardiac proteins. PB28 has been designed, developed, and biologically evaluated in the past decade in our research group. A possible mechanism to explain its surprising anti-COVID-19 activity is suggested..

8.
BMJ Open ; 10(9): e039338, 2020 09 24.
Article in English | MEDLINE | ID: covidwho-797426

ABSTRACT

OBJECTIVES: A number of studies have shown that the airborne transmission route could spread some viruses over a distance of 2 meters from an infected person. An epidemic model based only on respiratory droplets and close contact could not fully explain the regional differences in the spread of COVID-19 in Italy. On March 16th 2020, we presented a position paper proposing a research hypothesis concerning the association between higher mortality rates due to COVID-19 observed in Northern Italy and average concentrations of PM10 exceeding a daily limit of 50 µg/m3. METHODS: To monitor the spreading of COVID-19 in Italy from February 24th to March 13th (the date of the Italian lockdown), official daily data for PM10 levels were collected from all Italian provinces between February 9th and February 29th, taking into account the maximum lag period (14 days) between the infection and diagnosis. In addition to the number of exceedances of the daily limit value of PM10, we also considered population data and daily travelling information for each province. RESULTS: Exceedance of the daily limit value of PM10 appears to be a significant predictor of infection in univariate analyses (p<0.001). Less polluted provinces had a median of 0.03 infections over 1000 residents, while the most polluted provinces showed a median of 0.26 cases. Thirty-nine out of 41 Northern Italian provinces resulted in the category with the highest PM10 levels, while 62 out of 66 Southern provinces presented low PM10 concentrations (p<0.001). In Milan, the average growth rate before the lockdown was significantly higher than in Rome (0.34 vs 0.27 per day, with a doubling time of 2.0 days vs 2.6, respectively), thus suggesting a basic reproductive number R0>6.0, comparable with the highest values estimated for China. CONCLUSION: A significant association has been found between the geographical distribution of daily PM10 exceedances and the initial spreading of COVID-19 in the 110 Italian provinces.


Subject(s)
Air Pollution , Betacoronavirus/isolation & purification , Coronavirus Infections , Disease Transmission, Infectious , Pandemics , Particulate Matter/analysis , Pneumonia, Viral , Air Pollution/analysis , Air Pollution/statistics & numerical data , COVID-19 , Coronavirus Infections/epidemiology , Coronavirus Infections/prevention & control , Coronavirus Infections/transmission , Correlation of Data , Disease Transmission, Infectious/prevention & control , Disease Transmission, Infectious/statistics & numerical data , Humans , Italy/epidemiology , Outcome Assessment, Health Care , Pandemics/prevention & control , Pneumonia, Viral/epidemiology , Pneumonia, Viral/prevention & control , Pneumonia, Viral/transmission , Public Health/methods , Public Health/statistics & numerical data , Risk Assessment/methods , SARS-CoV-2
9.
Environ Res ; 188: 109754, 2020 Sep.
Article in English | MEDLINE | ID: covidwho-436818

ABSTRACT

BACKGROUND: The burden of COVID-19 was extremely severe in Northern Italy, an area characterized by high concentrations of particulate matter (PM), which is known to negatively affect human health. Consistently with evidence already available for other viruses, we initially hypothesized the possibility of SARS-CoV-2 presence on PM, and we performed a first experiment specifically aimed at confirming or excluding this research hyphotesys. METHODS: We have collected 34 PM10 samples in Bergamo area (the epicenter of the Italian COVID-19 epidemic) by using two air samplers over a continuous 3-weeks period. Filters were properly stored and underwent RNA extraction and amplification according to WHO protocols in two parallel blind analyses performed by two different authorized laboratories. Up to three highly specific molecular marker genes (E, N, and RdRP) were used to test the presence of SARS-CoV-2 RNA on particulate matter. RESULTS: The first test showed positive results for gene E in 15 out of 16 samples, simultaneously displaying positivity also for RdRP gene in 4 samples. The second blind test got 5 additional positive results for at least one of the three marker genes. Overall, we tested 34 RNA extractions for the E, N and RdRP genes, reporting 20 positive results for at least one of the three marker genes, with positivity separately confirmed for all the three markers. Control tests to exclude false positivities were successfully accomplished. CONCLUSION: This is the first evidence that SARS-CoV-2 RNA can be present on PM, thus suggesting a possible use as indicator of epidemic recurrence.


Subject(s)
Betacoronavirus , Coronavirus Infections , Pandemics , Pneumonia, Viral , Betacoronavirus/genetics , COVID-19 , Humans , Italy , Particulate Matter , RNA, Viral/genetics , SARS-CoV-2
10.
Int J Environ Res Public Health ; 17(8)2020 04 23.
Article in English | MEDLINE | ID: covidwho-108948

ABSTRACT

The COVID-19 pandemic caused the shutdown of entire nations all over the world. In addition to mobility restrictions of people, the World Health Organization and the Governments have prescribed maintaining an inter-personal distance of 1.5 or 2 m (about 6 feet) from each other in order to minimize the risk of contagion through the droplets that we usually disseminate around us from nose and mouth. However, recently published studies support the hypothesis of virus transmission over a distance of 2 m from an infected person. Researchers have proved the higher aerosol and surface stability of SARS-COV-2 as compared with SARS-COV-1 (with the virus remaining viable and infectious in aerosol for hours) and that airborne transmission of SARS-CoV can occur besides close-distance contacts. Indeed, there is reasonable evidence about the possibility of SARS-COV-2 airborne transmission due to its persistence into aerosol droplets in a viable and infectious form. Based on the available knowledge and epidemiological observations, it is plausible that small particles containing the virus may diffuse in indoor environments covering distances up to 10 m from the emission sources, thus representing a kind of aerosol transmission. On-field studies carried out inside Wuhan Hospitals showed the presence of SARS-COV-2 RNA in air samples collected in the hospitals and also in the surroundings, leading to the conclusion that the airborne route has to be considered an important pathway for viral diffusion. Similar findings are reported in analyses concerning air samples collected at the Nebraska University Hospital. On March 16th, we have released a Position Paper emphasizing the airborne route as a possible additional factor for interpreting the anomalous COVID-19 outbreaks in northern Italy, ranked as one of the most polluted areas in Europe and characterized by high particulate matter (PM) concentrations. The available information on the SARS-COV-2 spreading supports the hypothesis of airborne diffusion of infected droplets from person to person at a distance greater than two meters (6 feet). The inter-personal distance of 2 m can be reasonably considered as an effective protection only if everybody wears face masks in daily life activities.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Aerosols , Betacoronavirus , COVID-19 , Coronavirus Infections , Europe , Italy , Nebraska , Pandemics , Pneumonia, Viral , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL